Search results for "lattice [perturbation theory]"
showing 10 items of 139 documents
Localized Motion in Supercooled Glycerol as Measured by 2 H-NMR Spin-Lattice Relaxation and Incoherent Neutron Scattering
1991
Selectively deuterated glycerol has been subjected to 2H-NMR spin-lattice relaxation and quasi-elastic neutron scattering experiments. The measurements yield relaxation rates and a non-Gaussian Q-dependence of the Debye-Waller factor which are different for the two hydrogen sites. The data analysis shows that below the onset of the glass transition α-process the hydrogens perform a local motion (≈ 10-12 s) in addition to what is expected from harmonic phonons. The resulting mean-square displacements are highly temperature dependent but are significantly smaller than those found in van der Waals glasses. Amplitudes and activation energies of the carbon-bonded and oxygen-bonded hydrogens are …
On the lattice of J-subnormal subgroups
1992
Lattice-Boltzmann and finite difference simulations for the permeability of three-dimensional porous media
2002
Numerical micropermeametry is performed on three dimensional porous samples having a linear size of approximately 3 mm and a resolution of 7.5 $\mu$m. One of the samples is a microtomographic image of Fontainebleau sandstone. Two of the samples are stochastic reconstructions with the same porosity, specific surface area, and two-point correlation function as the Fontainebleau sample. The fourth sample is a physical model which mimics the processes of sedimentation, compaction and diagenesis of Fontainebleau sandstone. The permeabilities of these samples are determined by numerically solving at low Reynolds numbers the appropriate Stokes equations in the pore spaces of the samples. The physi…
Dynamics of supercooled liquids and glassy solids
2001
Lattice Boltzmann versus Molecular Dynamics simulations of nanoscale hydrodynamic flows
2006
A fluid flow in a simple dense liquid, passing an obstacle in a two-dimensional thin film geometry, is simulated by Molecular Dynamics (MD) computer simulation and compared to results of Lattice Boltzmann (LB) simulations. By the appropriate mapping of length and time units from LB to MD, the velocity field as obtained from MD is quantitatively reproduced by LB. The implications of this finding for prospective LB-MD multiscale applications are discussed.
Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method
2000
Abstract We have simulated spreading of small droplets on smooth and rough solid surfaces using the three-dimensional lattice-Boltzmann method. We present results for the influence of the initial distance and shape of the drop from the surface on scaling of droplet radius R as a function of time. For relatively flat initial drop shapes our observations are consistent with Tanner's law R ∼ t q , where q =1/10. For increasingly spherical initial shapes, the exponent q increases rapidly being above one half for spherical droplets initially just above the surface. As expected, surface roughness slows down spreading, decreases the final drop radius, and results in irregular droplet shape due to …
Extending the star order to Rickart rings
2015
Star partial order was initially introduced for semigroups and rings with (proper) involution. In particular, this order has recently been studied on Rickart *-rings. It is known that the star order in such rings can be characterized by conditions not involving involution explicitly. Owing to these characterizations, the order can be extended to certain special Rickart rings named strong in the paper; this extension is the objective of the paper. The corresponding order structure of strong Rickart rings is studied more thoroughly. In particular, the most significant lattice properties of star-ordered Rickart *-rings are successfully transferred to strong Rickart rings; also several new resu…
Mesoscopic Simulation Methods for Studying Flow and Transport in Electric Fields in Micro- and Nanochannels
2012
In the past decades, several mesoscale simulation techniques have emerged as tools to study hydrodynamic flow phenomena on scales in the range of nanoto micrometers. Examples are Dissipative Particle Dynamics (DPD), Multiparticle Collision Dynamics (MPCD), or Lattice Boltzmann (LB) methods. These methods allow one to access time and length scales which are not yet within reach of atomistic Molecular Dynamics (MD) simulations, often at relatively moderate computational expense. They can be coupled with particle-based (e.g., molecular dynamics) simulation methods for thermally fluctuating nanoscale objects, such as colloids or large molecules. This makes them particularly attractive for the a…
Lattice Boltzmann Simulations at Petascale on Multi-GPU Systems with Asynchronous Data Transfer and Strictly Enforced Memory Read Alignment
2015
The lattice Boltzmann method is a well-established numerical approach for complex fluid flow simulations. Recently general-purpose graphics processing units have become accessible as high-performance computing resources at large-scale. We report on implementing a lattice Boltzmann solver for multi-GPU systems that achieves 0.69 PFLOPS performance on 16384 GPUs. In addition to optimizing the data layout on the GPUs and eliminating the halo sites, we make use of the possibility to overlap data transfer between the host CPU and the device GPU with computing on the GPU. We simulate flow in porous media and measure both strong and weak scaling performance with the emphasis being on a large scale…
NMR T1-Relaxation Measurements on Paramagnetic Organolanthanides: An Alternative Tool for Structure Determination in Solution
2005
1H NMR investigations were conducted on four paramagnetic organolanthanides, all bearing the tetraisopropylcyclopentadienyl ligand Cp4i (HC5iPr4) in order to verify whether or not interactions observed in the solid state are maintained in solution. In some cases variable-temperature experiments were necessary to enhance the resolution and determine the best conditions for the study. The 1D NMR spectrum could be interpreted in every case. Complementary 2D COSY experiments allowed the full attribution of the signals. T1 (1H) relaxation values were determined for all the paramagnetic complexes at the most suitable temperature, and compared with those of the diamagnetic KCp4i. The same tendency…